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1. IN the Philosophical Transactions for 1831 Mr. Lussock published the results
of a discussion of nineteen years of the London tide observations; and from the
materials there given, I endeavoured to obtain the mathematical laws of the inequa-
lities of the phenomena, in a memoir which was published in the Transactions for
1834. Mr. LueBock having now, in Part II. of the Transactions for the present year,
published the results of a similar discussion of nineteen years of the Liverpool tide
observations, I intend in the present paper to use these results in testing and improv-
ing the formulee to which I was led by the London observations.

Perhaps the precise object of such investigations as this may be best understood by
comparing them with corresponding steps in the history of other parts of astronomy;
as, for instance, in the progress of our knowledge respecting the Moon’s motions.
After Hipparcaus had singled out and reduced to rule the great inequality of the
Moon’s motion, the Equation of the Centre, it was the employment of succeeding astro-
nomers, as, for instance, ProLemy and TycHo, to discover, by examination of long-
continued observations, other smaller inequalities, and the laws which they follow ; as
the Variation, Evection, and others. In the same manner, the great inequality of the
tides, the Semimenstrual Inequality of the time, is now well understood ; and the
agreement which Mr. LusBock showed to exist between the London observations
and the formule leaves nothing to desire. But formulse for the observed effects of
lunar and solar parallax and declination (although some such formulse may have been

* For convenience of reference I shall take the liberty of thus numbering the papers in the Philosophical
Transactions in which I have attempted to make out the Laws of the Tides. The preceding papers are,

First Series. Essay towards a First Approximation to a Map of Cotidal Lines.—1833, Part I.

Second Series. On the Empirical Laws of the Tides in the Port of London.—1834, Part I.

Third Series. On the Results of Tide Observations made in June 1834 at the Coast Guard Stations in Great
Britain and Ireland.—1835, Part I.
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2 THE REV. W. WHEWELL ON THE EMPIRICAL LAWS

employed by the calculators of Tide Tables) have never been published, as far as I am
aware, except in the memoir already mentioned. It was therefore a matter of great
interest to examine whether the formulse obtained from the London tides are con-
firmed by those of Liverpool, and whether any further light is thrown upon the sub-
ject by this addition to our materials.

2. The results of this examination have been very satisfactory. The Liverpool ob-
servations have both confirmed, in general, my formulee, and have given me the
means of very much improving them. The corrections for lunar parallax and decli-
nation, which, as far as they depended on the former investigation, might be consi-
dered as in some measure doubtful, and probably only locally applicable, have been
so fully verified as to their general form, that I do not conceive any doubt now re-
mains on that subject; and the nature of the local differences in the constants of the
formula has also in part come into view. This investigation shows, that notwith-
standing the great irregularities to which the tides are subject, the results of the
means of large masses of good observations agree with the formulse with a precision
not far below that of other astronomical phenomena; as, for example, a fraction of a
minute in the times, and a fraction of an inch in the heights.

This precision is the more worthy notice, because the formulse which we obtain
point directly to a very simple general law of the tides ; namely, that the tide at any
place occurs in the same way as if the ocean imitated the form of equilibrium cor-
responding to a certain antecedent time. This Equilibrium-Theory (the constant
quantities which it introduces being suitably modified,) expresses, with very remark-
able exactness, most of the circumstances in my results: I will therefore, before
stating them, explain it a little further.

3. The theoretical formula for the position of the pole of the equilibrium-spheroid is

ksin2¢

tan2 ¢ = — mm,

where % and % are the elevation of the spheroid due to the sun and the moon respec-
tively, ¢ the angular distance of the moon from the sun, ¢ the angular distance of
the pole of the spheroid from the moon’s place.

In the case of the tides, we may suppose the actual ocean-spheroid to follow the
equilibrium-spheroid at an angular distance %', the spheroid being that which corre-
sponds to a distance of the sun and moon ¢ — ¢, instead of . Thus we have

hsin? (g — a)

tan2 (@ — ) = ~ Wi hcos2(p—a)

In the same manner the theoretical height of the pole of the equilibrium-spheroid
above the mean surface is 4/ {#24-h2+2 h A' cos 2 ¢}; and on the equilibrium-theory
the height of the tide above the mean surface is v/ {A2 + A2 4 2 2 &' cos 2 (p — e)}.

By assuming properly the values of 2 and %, « and %', these expressions may be made
to agree very closely with the mean results of observation. This was shown with
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respect to the expression for the time by Mr. Lussock from the London observations.
The Liverpool observations give a still closer agreement, assuming ' =11 6™,

lz . .
a = 1P 15m, 77 = sin 89™ = sin 22° 15/,
The expression for the heights also agrees very nearly with observation, as I shall

. h .
show, but for this purpose we must suppose « = 1*, 77 = sin 23° 30'.

The agreement in these cases is the more remarkable, on account of the want of
symmetry in the functions which thus occur. The curve, the ordinate of which re-
presents the time of high water (reckoned from the moon’s transit), is not symme-
trical with regard to its maximum ordinates. The curve, the ordinate of which
represents the height of high water, is not symmetrical with regard to its mean line
of abscissas. Yet in both these cases the theoretical and observed curve agree within
a minute and an inch during their whole course. It is impossible to doubt, under
these circumstances, that the theoretical formula truly represents the observed facts.

4. But this agreement belongs to the mean of all the observations; and we have
further to seek for the alteration in the formula, which is requisite in order to repre-
sent the effect of changes in the parallax and declination of the sun and moon. In
these respects also we find a near agreement of the theory and observation. By the
equilibrium-theory, the height 7’ of the lunar tide ought to be proportional to the
cube of the moon’s parallax; it is exactly or nearly so: by the same theory the
height 2' ought to diminish when the moon’s declination increases, and by a quantity
proportional to the square of the sine of the declination. It is found to do so with
great precision.

5. But the equilibrium-theory, since it does not point out the existence of the quan-
tities A’ and «, does not indicate what changes these quantities may be expected to
undergo, when the moon’s force is altered by the effects of parallax and declination.
We find that in that case, these quantities also are altered, and the resulting change
in the phenomena may be conceived in the following manner.

If we suppose the moon to revolve about the earth by the diurnal motion, perpe-
tually drawing the waters towards the position of equilibrium, we may conceive that
the ocean would form a spheroid, the pole of which would revolve round the earth,
following the moon at a certain distance of terrestrial longitude. For the sake of
distinctness, let this distance be called the Retroposition of the theoretical tide in lon-
gitude. Its mean value is what I have termed in other communications the  cor-
rected establishment” of a place in the open ocean.

If, from an original equilibrium-tide, a derivative tide were sent off, along any
channel in which it is no further influenced by the forces of the moon and sun, it
would take a certain time in reaching any place in that channel; and the circum-
stances of the tide at that place would not depend upon the positions and distances
of the moon and sun at the time when the tide happens, but upon the positions and
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4 THE REV. W. WHEWELL ON THE EMPIRICAL LAWS

distances of those luminaries at a certain time, anterior to the time of the tide by the
interval occupied in the transmission of the tide along the channel. Let this interval
of time be called the Refroposition of the theoretical tide in time. It is what, on former
occasions, I have called the “ age of the tide.”

6. This phraseology being adopted, the phenomena of the Liverpool tides may be
expressed as follows.

(1.) The effects which the changes of the Moon's force produce upon the Tides, are
the same as the effects which those changes would produce upon a Retroposited Equili-
brium-tide.

(2.) The Retroposition of the Tide in longitude is affected by small changes, which
changes are proportional to the variations in the moon’s tidal force.

(8.) The Retroposition of the Tide in time is also affected by small changes, which
changes depend on the variations of the moon’s force.

7. The former of these propositions is proved by the verification of the formulee
already mentioned, since these agree with the formulee for equilibrium-tides, except
in the circumstance of having ¢ — « for ¢. Now this difference is equivalent to a re-
troposition of the tide in time, of such magnitude that, during this time, the distance
of the sun and moon is changed from ¢ — « to ¢. If @ be 1* 15™, as collected from
the law of the times, the retroposition in time is the time requisite for the moon to
increase its right ascension from the sun by 1" 15™; that is, it is g days nearly, or 1
day 13} hours. The tide at Liverpool agrees nearly with an equilibrium-tide pro-
duced in the southern ocean, 37% hours previously to the moon’s transit at that port,
and transmitted thither unchanged.

8. The second of the above propositions is proved by tracing the effect of changes
of lunar parallax and declination upon the results compared with the above formula
for the times and heights, namely,

hsing (¢ — )
tan2 (0 —n) = — 5 +Sll10052(<‘p—-a) R (/8
y=v A2+ rR+2hkcos2(p—a)} . . . . . . . . . (b)

By the equilibrium-theory, the change which would be produced by any alteration of
the moon’s force would correspond to the effect of an alteration in the value of 7/, the
amount of the lunar tide. It appears from the examination of the observations, that
this change takes place in fact, but that we must also suppose a change in 2' in order
that the formula (a.) may represent the observed intervals of time. This change in
A, the retroposition of the tide in longitude, is

2m5 (p — 57) for parallax p minutes. (See Art. 15.)
84™ sin? d for declination d. (Art. 21.)

Now, by the theory, the effect of a change in the moon’s parallax on the equilibrium-
tide is as the change of parallax; and the effect of the moon’s declination is a change
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proportional to the square of the declination. Therefore the second of the above
three propositions is established.

According as the moon’s parallax is less, and according as her declination is greater,
the moon’s tidal force is less, and 4’ in the above formulee is less. Yet it is remark-
able that these two circumstances affect the magnitude of the retroposition of the
tide in opposite ways. In one case?'is augmented, in the other case it is diminished.
When the moon’s force decreases, by her receding further from the earth, the tide
follows the moon at a greater interval; the mean interval increasing from 10" 55™
to 112 12, while the parallax diminishes from 61’ to 54'. But when the moon moves
away from the equator, which also diminishes her tidal force, the tide follows her
more closely, the interval decreasing from 11" 12™ to 10" 55™, while the declination
increases from 0° to 27°. '

The Liverpool tide happens about 11 hours after the next preceding transit; and
as the retroposited tide happens about 373 hours before this transit, we must sup-
pose the Liverpool tide to be produced at an interval of 483 hours preceding the
time at which it is observed, in order to make it agree nearly with the equilibrium-
theory; and we may suppose this time to be employed in the transmission of the
tide along its channel. If we suppose the original tide to lag behind the position
of equilibrium, we may suppose the amount by which it lags to vary with the
changes of the moon’s force, to the amount above stated as the variation of . On
this supposition we may suppose the time of transmission of the tide along its chan-
nel to be constant. Or we may suppose that the changes of the moon’s force not
only affect the lagging of the original tide behind the equilibrium position, but also
affect the velocity of transmission to Liverpool. In either of these ways the circum-
stances of the tide may be hypothetically represented ; but it will, of course, be un-
derstood that we use such hypotheses at present only for the sake of connecting and
representing the facts.

9. The effect which changes in the moon’s force produce upon the retroposition of
the tide in time, that is, on the value of « in the formule (a.) and (b.), is more difficalt
to determine with any precision. It is, however, manifest from the general course of
the quantities in the Tables, that « is greater as the moon’s parallax is greater, and as
her declination is greater. This is proved by each Table independently. Thus I have
collected as the amount of this change,

om-5 (p — 57') from the effect of parallax on the times (Art. 18.),
4m (p — 57') from the effect of parallax on the heights (Art. 20.),
75m gin? 3 from the effect of declination on the times (Art. 23.);

the effect of declination on the heights offers no clear evidence of a change in .
Since, in the change of parallax from 54' to 61', the value of «, as given by the
times, changes from about 1" 8™ to 1k 24™, the retroposition of the tide in time
varies from about 34 to 42 hours.
10. The circumstances of the Liverpool tides may be represented hypothetically
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in the following way. Let it be supposed that the ocean-spheroid assumes a form
agreeing with the equilibrium-spheroid at the moment, and that the pole of this
spheroid follows the position of the pole of the equilibrium-spheroid at a certain
mean interval, say 90°. Let it be supposed that at a certain time a tide is sent off
from this ocean-spheroid along a channel in which it is no longer affected by the
moon or sun, and thus reaches Liverpool, producing the tide there. The following
assumptions will then represent the facts.

When the horizontal parallax is 54/, the tide is sent off along the channel in lon-
gitude 483° east of Liverpool, at 45" 6™ before the time of Liverpool high water, and
the pole of the ocean-spheroid follows the position of equilibrium at a distance 90° 24'.

When the horizontal parallax is 57/, the tide is sent off along the Liverpool channel
in longitude 943° east, at 48" 36™ before the Liverpool high water, and the actual
spheroid is 90° behind the position of equilibrium.

When the horizontal parallax is 61', the tide is sent off along the channel in lon-
gitude 159%° east, at 53" 0™ before the occurrence of high water, and the actual
spheroid is 89° 16’ behind the position of equilibrium.

This hypothesis thus modified represents the circumstances of the Liverpool tide as
affected by lunar parallax. The effect of lunar declination might be represented in a
similar manner. ;

It is not to be imagined that this hypothetical representation is near to the true
state of the case. The changes in the lagging, in the length of the channel of
transmission, and in the velocity of transmission, are not such as the forces can be
supposed likely to produce. Nor is it likely that the original tide is exactly what it
would be if the condition of equilibrium were fully attained. The tide-spheroid not
only lags behind the position of equilibrium, but deviates from the form of equi-
librium ; and other differences, besides the retroposition in longitude and in time, are
introduced by the waters being in motion instead of at rest. This is seen in our
results ; -for the tidal force of the moon, which, in the equilibrium-spheroid, varies as
the cube of the parallax, appears in the observations to vary more nearly as the
square of the parallax : and though this difference may be referred to the inaccuracy
of the observations, it may, I think with more probability, be considered as resulting
from the condition of the waters being a condition of motion, not of equilibrium.
The temporary variations of the force do not affect the form of the waters in the same
proportion as the mean force, which is constantly dragging the waters after it, round
the earth.

11. In what has been hitherto stated with regard to the hypothetical representation
of the tides, we have had a reference solely to Liverpool. It cannot, however, be
doubted that the general laws of the tides at other places would resemble those of
that port, and therefore might be represented in a similar manner. It has already
been shown in my former memoir, though less satisfactorily and precisely than in
this, that the tides of London follow the same rules as those now described.

The numbers, however, which enter into these formulee will not necessarily be the
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same at two places; and since the empirical formulee have not been determined for
any places except those of London and Liverpool, we have not the means of disco-
vering the relation of the constants at various places. The following comparison of
the data of observation at London and at Liverpool is instructive as far as it goes.

The greatest difference arising from the mean semimenstrual inequality is the same
at the two ports, being 88™ at both. This coincidence is striking ; yet I am disposed
to believe it accidental, although, according to theory, this quantity ought to be the
same at all places, since it depends only upon the mean ratio of the solar and lunar
tidal forces ; for the semimenstrual inequalities at different places differ so much by
other observations, (varying from 79™ at Brest to 96™ at Plymouth,) that I do not
conceive the difference can arise from the incompleteness of the observations.

The effects of the parallax and declination at London were given by approximate
formulee, less exact than those which we have now obtained for Liverpool ; but, com-
paring the London formulee with corresponding approximations at Liverpool, we
have the following results.

If A’ represent the value of A’ for the mean parallax 57’ and the declination 0°, we
have for the parallax p, and declination 9,

at London A" = A' — 3™ (p — 57) — 132™sin? 3,
at Liverpool A' = A’ — 21™ (p — 57) — 84™sin?9, by Art. 15 and 21.
Also the maximum semimenstrual inequality,
at London = 40™ 4 3™ (p — 57) + 84™sin?9,
at Liverpool = 41m 4 2m (p — 57) + 30™ sin?3, by Art. 17 and 23.
Also if H' be the value of A' for the mean parallax and the declination 0°, we have,
at London A = H' 4 0%*17 (p — 57) — 3%sin?39,
at Liverpool % = H' 4 1%47 (p — 57) — 6sin? 3, by Art.19 and 24.
And at London % =1%7.
at Liverpool A = 2f8.

12. The resemblances of the formulee at the two places are remarkable, but the
differences are still more so. The differences in the heights of the tide at different
places are indeed what we know to prevail universally, and to depend upon local cir-
cumstances in an intelligible manner: but the differences in time are more difficult
to explain, since both the tides come from the same origin. The difference in the
effect of parallax may indeed be due to the inaccuracy of the data, but it is scarcely
possible that this can be true of the difference in the effect of declination, which
appears to be in the ratio of 132 to 84 for the non-periodical, and 84 to 30 for the
periodical, part. Similar discussions of observations at other places will best throw
light on this difficulty.

I now proceed to state the method by which the above empirical formulee have
been obtained.
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The Semimenstrual Inequality.

13. In order to obtain the semimenstrual inequality of the fimes of high water, I
take Mr. LusBock’s Table VII., and from each column of intervals (of tide and
moon’s transit) I subtract the mean of that column ; and I thus obtain Table VII. (a),
which exhibits the semimenstrual inequalities for each minute of parallax. I then
take the means of the horizontal lines in this, interpolating in H. P. 60' and omitting
H. P. 61'. The resulting intervals are those of the mean tide.

Tasre VII. (a.)
Mean of each column subtracted from the column ¢ Interval” of times.

H.P..... 54/, 55 | 56 st | s 59, 60'. 61", Mean.

Mean h m h m h m h m h m h m h m h m h m
Interval 11 127 {11 115 |11 83 |11 65|11 37 |11 0:3 |10 585 |10 545 11 6

) ’sTransit.| Remainder.,| Remainder. Remainder.| Remainder,| Remainder.| Remainder.| Remainder.| Remainder.| Remainder,

30 +44'8 | 4418 | 4401 | +374 | 4341 | 4311 | 4202 .. +36+6
30 +509 | +493 | +479 | +450 | +441 | 4416 | 4398 | +39 + 456
30 | 4425 | +418 | 4413 | +40-1 | +386 | +380 | +36'1 | +358 | 4398
30 | 4285 | +281 | 4266 | +257 | 4236 | +257 | +244 | +254 | +261

h
030 | +137 | +116 | + 80 | 4116 | +122 | 4129 | 4133 | +11-8 | +122
13 | —52 | —68 | —65 | —39 | — 53 | —28 | — 25 |— 28 | — 46
230 | —232 | —220 | —220 | —208 | —186 | —175 | —166 | —171 | —20-0
330 | —414 | —36+7 | —347 | —330 | —321 | —29'3 | —304 .. —339
430 | —49:0 | —478 | —44:0 | —41-8 | —40-4 | —384 | —387 .. —42-8
530 | —477 | —457 | —436 | —432 | —394 | —385 | —375 . —432
630 | —272 | —264 | —24'5 | —257 | —256 | —24'8 | —21'5 .. —250
730 | 4148 | 4134 | 41149 | + 92 | + 65 | + 16 | +11 . + 96
8
9
0
1

ot

Max.Dif| 999 | 951 | 919 | ss2 | sas | 801 | 785 | 88-8

On comparing the mean numbers in the last column with the theoretical formula
» csin? (¢ — «)

1 ¢ cos 2 (p—a)

it appears that they may be very accurately represented by making ' = 11* 6™,
o = 1M 15™, ¢ = sin 1" 29™. The agreement of this formula with observation is as
follows:

tan2 (0 — ) = —

,IMOOH.’S Formula. Obs. Diff.
ransit.

h m m s m s m s
0 30 +12 16 +12 12 -0 4
1 30 — 4 7 — 4 36 — 029
2 30 —20 6 —20 0 + 0 6
3 30 —34 0 —33 54 4+ 0 6
4 30 —43 6 —42 48 + 0 18
5 30 —42 40 —43 12 — 0 32
6 30 —25 8 —25 0 + 0 8
73 |+9 2 | +9 6 | 40 4
8 30 +36 28 +36 36 4+ 0 8
9 30 +44 30 45 36 +1 6
10 30 +39 40 39 48 4+ 0 8
11 30 +27 36 26 6 — 1 30

This accordance is complete, the difference amounting in only two cases to 1m,
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14. The semimenstrual inequality of the heights for each minute of horizontal
parallax, and the mean semimenstrual inequality of the heights, are in like manner
obtained by subtracting from each column of heights in Mr. Lussock’s Table VIL.
the mean of that column, and taking the means of the horizontal lines as is done in

Table VII. (a.) - VIL (b)
ABLE . (b.

Mean of each column subtracted from column ¢ Height of Tide.”

H. P....... 54, ( 557 56, 57, 58/, 59, 60", 61/,

—_ Mean.
Meanheighi 1420 | 14-41 | 1484 | 1522 | 1563 | 1602 | 1643 | 16:66 oo

Y ’sTransit.| Remainder.' Remainder.| Remainder.| Remainder.| Remainder.| Remainder.| Remainder.| Remainder.| Remainder.
m

30 | 4238 | +247 | +245 | +231 | +233 | 4235 | +219 | +251 | +235
30 | +226 | +223 | +225 | +241 | +249 | +243 | 4266 | +273 | +2:39
30 | +162 | +1:61 | +1-83 | 4182 | +1:91 | 4202 | +232 | +2-21 | +1:88

1
2
330 | 4049 | +070 | 4074 | 4095 | +095 | +117 | +1-27 + <90
4380 | —061 | —055 | —064 | —0:33 | —027 | —015 | —0-10 — 38
530 | —192 | —192 | —193 | —1:83 | —1:62 | —1-53 | —1:57 —176
6 30 | —313 | —305 | —314 | —2:69 | —279 | —273 | —285 —2:91
730 | —2:81 | ~296 | —274 | —289 | —297 | —306 | —3-14 —2:94
830 | —152 | —162 | —1:69 | —186 | —1:86 | —2:09 | —2-33 —1-85
930 | —006 | —0:08 | —0-18 | —0°43 | —0-54 | —060 | —0-75 | —060 | — -38
10 30 | +1-18 | 4116 | +1-13 | 4082 | +0-80 | 4060 | +1-61 | —065 | 104
11 30 | +210 | 4189 | +1:95 | +1-78 | 4163 | +164 | +165 | +1-78 | +1-81
Max.diff.]  5°51 552 559 5:30 5-46 549 580 | ...... 533
Mean .. 544
Half . .. 2:74

The theoretical height of the high water above the mean surface of the ocean is
v {24 R4 2h1 cos2(p—e)}; and therefore if & be the mean of all the high-
water heights, we shall have for the semimenstrual inequality of height the expression
v K24 h+ 201 cos2(p—a)} — k.
This will agree very nearly with the result of observation if we make
h=274, h = 6872, k =719, o = 1",
The accordance is as follows:

Moon’s

Transit, Formula, Obs,

=
B

f.
30 2:35 2:35
30 235 2:39
30 1-83 1-88
30 0-84 0-90
30 [ —048 | —038
30 [ —1-89 | —1-76
—290 | —291
30 | —2:90 | —294
30 [ —1-89 | —1:85
30 | —0-48 | —0-38
30 0-84 1-04
30 1-83 1:81

—_ oW RSN WD =O
w
(=]

—

The greatest deviation is about an inch, the mean a small fraction of an inch.
MDCCCXXXVI. c
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Effect of the Moow’s Parallazx.

15. In Mr. Lussock’s Table VII., which contains the effect of lunar parallax, and
has a column for each minute of parallax, we have, in Art. 13, taken the mean of
each column, and subtracted it from every number in the column. In this way, it
is evident that the mean contains the non-periodical part of the effect, and the re-
mainder contains the part which goes through its period in a semi-lunation.

The non-periodical part of the interval stands in the uppermost line of Table VII.
(a) Art. 13.; and its variations are manifestly nearly or exactly proportional to the
variations of the parallax. If we take 57' as the mean parallax, we may express
these means very nearly by the formula

11t 625 — 25 (p — 57'),
p being the H. P. The agreement of the formula with observation is as follows, and
is a near approximation.

HoPoviveenrnnnnn 54/, 55, 567, 57. 58, 59/, 60’. 61,

h m h m h m h m h m h m h m h m
Obs. ...... 11 1277 11 11-5{ 11 83|11 6:5|11 37|11 0-3| 10 585| 10 545
Formula....| 11 13 11 11511 9 11 65|11 4 11 15|10 59 10 565

The column for H. P. 60' is completed by interpolation, and the column for H. P. 61’
is omitted. The latter is defective in half the hours of moon’s transit, which arises from
the effect of the Moon’s Variation on the parallax. The parallax has a term depending
on the sine of twice the distance of the moon from the sun, and cannot be so great as
61' except near syzygy. The “observed” mean for 61' is that which makes the num-
bers in that column follow nearly the same law as the rest.

The periodical part of the effect of lunar parallax is shown in the lower part of Ta-
ble VII. (a). It appears there that the intervals for all the values of H. P. follow
nearly the same law as the mean interval already considered, but with a difference in
the maximum value of the inequality. If we add together the greatest positive and
negative numbers in each column, we obtain the double of the maximum inequality
nearly, but not exactly, since the maximum does not correspond exactly to times
of moon’s transit contained in the Table. Making a slight addition on this account,
we have,

H. Pocverrvonrans 54/, 55, 567, 57, 58, 59, 60", 61
m m m m m m m

Sum ...... 999 951 91-9 882 845 80-1 7845

Double Max.| 101 961 92-8 89 852 807 79

Formula....| 101 97 93 89 85 81 77

Now in the expression

) N o csin2 (¢ — «)
tan2 (0’ —¥) = — 14¢cos2(p—a)
the maximum value occurs when cos 2 (p — a) = — ¢, and is equal to e, If

V1 —c
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we make ¢ = siny, we have for the maximum tan2 (¢ — A') = tan ¢ ; and therefore
maximum 2 (¢ — ) = . Hence we have y for each H.P. by reducing the above
double maxima to arcs, and thence we have ¢, by finding the sines of these arcs.

16. By the equilibrium-theory, ¢ should be inversely as the cube of the H. P.;

. =3
therefore, if C be the value of ¢ for H. P. 57, we have —é = %—;—3—; log ¢+ 3log p

= log C + 3log 57 ; and therefore this quantity, log ¢ 4 3 log p, should be constant.
It is found that we get a quantity much more nearly constant by taking log ¢ 4+ 22
log p. The following is the result:

H. P. ¥ © -l:%i:; ) log p. % log p. log cp 22

54. 25 15 9:62999 1-73239 346478 3:44125
346478

55. 24 15 961354 1-74036 348072 344233
3:48072

56. 23 12 959543 1:74819 349638 344145
3:49638

57. 22 15 9°57824 1-75587 351174 344115
351174

58. 21 18 9:56021 1-76343 352686 3-43976
3-52686

59. 20 10 9-53751 1-77085 354170 343338
3:54170

60. 19 45 9+52881 1-77815 355630 344074
3-55630

61.

Hence, c =C (%;)22 nearly.

17. We may, however, express the result more conveniently for some purposes by
expanding this expression ; for the variation of the maximum will be very nearly as
the variation of the parallax ; and the double maximum may be nearly expressed by
the following formula :

89m — 4™ (p — 57).
The accordance is shown in the lowest line of the second Table in Art. 15.

18. By comparing, in Table VII. (a), the inequalities for moon’s transit 0" 30™,
1" 30m, and for 6" 30™ and 7" 30™, it is clear that they are equal to 0 at a later hour
for the larger than for the smaller parallaxes, which also appears by the maxima.
Hence « is larger for large parallaxes than for small ones. The exactness of the ob-
servations hardly allows us to determine its variation exactly. It appears, however,
that it may be sufficiently well represented by « = 1" 15™ 4- 2m5 (p — 57).

19. The effect of the lunar parallax on the 4eights will be found from Table VII. (b.)
in the same way as the effect on the times, by taking the mean of each column as the
non-periodical, and the remainder as the periodical, part of the inequality. The origin
of the measurements is arbitrary, the low water not being given. The non-periodical
part is represented with great accuracy (except for the extreme parallaxes) by the
formula 1522 + 4 (p — 57). The accordance is as follows :

c2
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H. P...| 5. 55'. 56, 57 58", ' 59", 60", | 61%
Obs. ..| 1420 14-41 14-84 1522 1563 16-02 16°43 16:66
Formula| 14:02 14-42 14-82 15:22 1562 16:02 1642 16-82

We cannot compare this effect of parallax on the heights with the whole height of
the tide, or with theory, from not having any observations of low water for this series
of tides.

The periodical part of the heights, as appears by the remainder of Table VII. (b.),
whatever be the parallax, follows nearly the law of the mean, which has already
been explained ; and the magnitude of the maximum differences does not appear to
be steadily different for different H. P. In fact, theory would lead us to expect it to
be the same in all these cases, because the amount of this inequality is 2 £, double the
mean solar tide.

20. But it appears from the Table VII. (b.) that the time of moon’s transit, when the
periodical inequality vanishes, is later for the larger parallaxes, and the maxima indi-
cate the same change: the amount of the change is about 4™ (p — 57), at the mean
between the greatest and least values of the height.

When ¢ = % + o, the formula for the inequality becomes ' — A, which is the

mean between the greatest and least values. In this case « = 1% Hence the value
of o is 60™ 4 4™ (p — 57).

Effect of the Moon's Declination.

21. The effect of the changes of lunar declination upon the tide will be found in
nearly the same way as the effect of changes in the parallax. Mr. LusBock’s
Table XII. gives the intervals for each 3° of declination. By finding the mean of each
column, and subtracting it from the column, we obtain the non-periodical and the
periodical part respectively of the inequality as is done in Table XII. (a.)

Tase XII. (a.)
[Intervals of times.] Mean of each column subtracted from the column.

Decl. ...... o°, 3°. 6°. 9°. 12°. 15°. 18°. l 21°. 24°, 27°.
Mean h m h m h m h m h m h m h m h m h m h m
Tnterval [|11 12:1(11 11-011 11-3{11 10-4(11 84|11 6-5{11 3-6(11 1210 590 {10 556

) ’sTransit.| Remainder.| Remainder.| Remainder.| Remainder,| Remainder.| Remainder.| Remainder., Remainder.| Remainder.| Remainder.

30 [4+100 |+ 84 |+ 88 |4+ 91 |+ 95 |+10-8 | +121 | +12:3 | +132 | +136
30 {—71|—63|— 56|—61|— 55|— 53|— 46|— 32|— 38|— 33
30 | —207 | —204 | —205 | —21°1 | —20-4 | —20-5 | —20:0 | —20:8 | —20°8 | —206
30 |—330|—319 |—327|—315|—330 | —337 | —304 | —33:0 | —34:4 | —33-7
30 | —405 | —41:2 | —40°9 | —40'3 | —41°1 | —42:2 | —420 | —43:3 | —446 | —45'7
—376 | —360 | —37-2 | —383 | —40°2 | —40-4 | —434 | —435 | —457 | —466
30 | —174|—172 | =196 | —20-7 | —22'2 | —23'1 | —25'3 | —26°9 | —284 | —31-7
30 | +11-3 | 4140 [ +11+5 | +12:0 | 4100 | +11-4 |+ 86 |+ 34 [+ 93 |+ 43
30 | +3850|+330|+371|+343|+372|+36-4|+365 | +397 | +37:3 | +409
30 | 4417 | +41:2 | +447 | +431 | 4422 | +436 | 4441 | +460 | +466 | +49'9
30 | +360 | +318 | +347 | +36:0 | +385 | +379 | +385 | +40:9 | +42'1 | +436
30 | 4223 | +246 | +21°9 | +239 | +256 | +256 | 4266 | +28:2 | 4289 | +30-0

HOWWSNAOAWM W ~OF
w
(==}

[urpr—

G{f&;es‘ 82:2 824 836 834 83-3 858 875 895 92-3 965

Excess }

above 82 0-2 0'4’ 16 ' 14 1-3 3-8 55 75| 103 | 145
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The first line of that Table contains the non-periodical part. In order to find its
law, subtract each mean from 11h 12™ corresponding to decl. 0. 'We obtain a series
of numbers which increase faster than the declination; and it is found that they may
be nearly represented by the expression 84 sin29d, o being the declination. The agree-
ment is as follows :

Declination...... ' 00, 29, 6°. 9°, 12°, 159, 18°, 210, 24°, 27°,
Obs.Diff... .. 0 1-0 07 1-7 36 55 8-0 10-8 13:0 16-4
Formula .. .. 0 02 08 2:0 36 56 80 108 | 139 | 178

Hence the non-periodical part is 114 12™ — 84™sin? 9.

The remainder of the Table XII. (a.) exhibits the periodical part of the inequality ;
and it will be seen that each column follows nearly the law of the mean semimenstrual
inequality as already obtained. In order to obtain the law of the coefficients, I take,
as before, the sum of the two maximum values. This sum converted into arc gives
v, and ¢ = sin y.

Decl. . cosec y = % E];(::ls‘s o‘ff: El;((c)egs.s. Log. sin?3. Difference.
0 | 20 33 | 2:8488028

3 | 20 36 | 28421877

6 | 20 54 | 28031777 _

9 | 20 51 | 28091995 | 0396033 | 2'59769 18-38866 20903
12 | 20 50 | 28117471 | -0370557 | 256878 18:63576 | 1-93302
15 | 21 27 | 27345630 | -1142398 | 1-05778 18:82600 23178
18 | 21 52 | 26849391 -1638637 1-21447 1897996 23451
21 | 22 23 | 26260406 | -2227622 | 1-34783 19:00866 -33917
24 | 23 5 | 25505680 | 2982348 1-47455 19:21862 25593
27 | 24 8 | 24458163 | -4029865 | 160528 19-31410 29118

For the smaller declinations, the differences are too small to be depended on. The
numbers corresponding to the resulting logarithms from 15° to 27° are from 17 to 2-1.

1
If we take the mean 1'85 as the number, we have for — the value 2:85 — 1'85 sin? 9,

which is sufficiently near.
!
22. By the theory of equilibrium —i- = %— And by the same theory, if H' be the

height of the lunar tide at the equator when the declination is 0, we shall have in
latitude /, when the declination is 9, two tides, of which the heights are H' cos? ({ 4 )
and H' cos? ({ —3). Now as we have not distinguished these two tides, our result
will be the mean of them. Therefore,
I =3%H' {cos? (! + d) + cos? (I — )}

= H' {cos?lcos?d 4 sin%/sin? d}

= H' {cos?l — (cos? ] — sin2) sin? 6}

= H'cos? /{1 — (1 — tan?) sin23d},
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But we have found that %' varies as
2:85 — 1-85 sin? 9.

1-85 37 2

o 2 — = . e

Hence 1 —tan?l= g7 = 55; tan’ /= 5
1 = 30° 38

Hence it appears that the amount of the effect of declination on the time H. W.
at Liverpool corresponds to the effect on an equilibrium-spheroid at a place in lati-
tude 30°.

23. It will be convenient to express the double maximum of the semimenstrual
inequality by a formula. The formula 60™ sin?d gives the following accordance with
the excess above 82m:

Decl. ...... °. I g0, 6°, e, 129, | 1s0. | 180, | are. ) 240, | o7°.
Obs. ...| 02 0-4 16 1-4 1-3 3-8 55 75 10:3 145
Formula| 0 0-2 03 1:4 2:6 40 60 77 99 | 124

Hence 82™ 4+ 60™ sin? d nearly expresses the double maximum.

It appears also that the times when the inequality is 0 and max. are later as the
declination is greater, the difference being about 15™ from decl. 0° to decl. 27°, and ap-
parently increasing as the square of the decl. or of sin decl. Now sin%27 =  nearly :
hence the correction of « is nearly 75™ sin?9, and we have & = 65™ - 75™ sin2 0.

24. The effect of lunar declination on the heights will be found in the same manner
from Mr. Lussock’s Table XVI. The mean of each column is obtained in the first

line of the following Table.
TasLe XVI. (b.)

[Heights.] Mean of each column subtracted from the column.

Decl. ...... 0°. 3°, 6°. 90, 129 150 189, 210, 240, ] 270,

Mean . . . . . . . . . .
Height}"' 1574 15-78 1577 1572 15°54 15-41 15:23 14-92 14-74 14-39

> . s . :
) ’sTransit.| Remainder.| Remainder.| Remainder.| Remainder.| Remainder.| Remainder,| Remainder.| Remainder, Remamder.l Remainder,

30 | +259 | +264 | +230 | 4252 | +265 | +2-58 | +2:27 | +2°53 | +2°18 | +2:38
30 | +253 | +252 | 4273 | +257 | +261 | +25]1 | +246 | +232 | +2:34 | +2:40
30 | +175|+197 {+195 [ +1-82 | +1:99 | 4+1-81 | 4+2:03 | +1:86 | 4199 | +2:10
30 | 4101 [ 4069 | —0-77 | +0-88 | 4080 | 4084 | 4110 | +1:03 | 4+1:21 | 4121
30 | —070 | —048 | —053 | —0'74 | —0:54 | —0:52 | —0:70 | —0°27 | —0:22 | —0°22
30 |—162 | —210 | —1-85 | —1-96 | —1-83 | —1-81 | —2:01 [ —1:86 | —1:75 | —1:61
—266 | —274 | —3:00 | —2:86 | —3-08 | —2:96 | —2:88 | —3°12 | —3:05 | —3:24
30 |—283 |—266 | —270 |—310 | —295 | —302 | —291 [ —3:01 | —3-10 | —3°20
30 |—161|—228 | —211 | —1-72 | —1-89 | —1:99 | —1:90 | —1:95 | —1-94 | —188
30 | —060 | —037 | —0:42 | —0:32 | —0-53 | —0°41 | —0:30 | —0°406 | —0-21 | —0-39
30 | +4+112 | +092 | +1:03 | 4084 [ 4095 | +1:12 | 4+0-99 | +1:01 | 4080 | 4 0-85
30 |4+109 | +193 | 4184 | 4214 | 41-87 | +1:81 | +1-90 | +1:87 | +1-78 | +1:60

HOWWNDOU W O—-=OF
W
=}

—

Gretestl|  54e | 538 | 573 | 567 | 573 | 560 | 537 | 565| 544 | 564

Mean 563
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If we subtract these mean heights from 15-8, the remainders are very nearly as sin? 3.
The formula 6 sin? 3 gives the following accordance :

Decl. ......... ; o | s | e ‘ 0, | 120, | 1s0. | 180 | 210 | e | 2w
Obs. ....| *06 02 03 08 26 *39 57 88 1406 | 1-41
Formula..| <00 02 08 14 26 40 60 77 99 | 124

Hence 158 — 6 sin2 d nearly is the non-periodical part of the Table.

The periodical part, as appears by the remainder of Table XVI. (b.), follows nearly
the law of the mean height already explained. The sum of the maximum inequalities
is not definitely different for the different declinations, which agrees with the theory,
according to which it is constant and equal to 2 A.

Also by comparing the columns for decl. 0° and 27°, it appears that the interval
between the times when the inequality is 0, is less for the greater decl., which also

. . . ko
agrees with the theory, for in that case the fraction 3 is greater, and the defect of

symmetry in the curve increases with this fraction.
There is no clear evidence of a variation of « in this Table.

Trinity College, Cambridge,
November 12, 1835.



